The Pilgrims' Progress

(Activity Model Version, with Apologies to John Bunyan)

The DRCOG Integrated Regional Model Team

A History of Our Decisions

- We wanted a new model because:
 - We polished the heck out of that ****, and it still isn't that shiny (accuracy.)
 - We got tired of saying "we can't answer that" (sensitivity.)
- Build another trip-based model or a tour/activity model?
- What tour/activity design approach should we follow?

A History of Our Decisions

- How should the software be developed (and by whom?)
- How should the models be estimated (and by whom?)

Questions from the Soapbox

- Tour/activity models: widespread use without widespread knowledge?
- How black a box do you want?
- How much (and what) should you do inhouse?
- Do we need to make these models more complex? Simpler? What do we sacrifice in either case?

Project Design

- Estimation data DRCOG leads.
- Validation year data DRCOG leads.
- Software design and development DRCOG leads, large consultant role.
 - integration with rest of DRCOG.
 - Flexible tool for other purposes.
 - In-house software skills.
 - Contract with local firms for specialty support.
- Choice model system design consultant leads
- Calibration/Validation leadership depends on budget status!

Choice Model Design

- No explicit modeling of household interaction
- But still we have around 70 choice models
- Several categories of models:
 - Logsum generators.
 - Long-term: Usual workplace location choice model.
 - Daily activity: the DAP and associated models.
 - Location choices. the DAP and location choice models.
 - Mode choice: tour and then trip models.
- Logsums don't really "feed up from below" (no time machine model needed yet.)

Model Components

- 1 Population synthesizer
- 1 TransCAD network/skims
- 5 Aggregate Mode/Destination Logsum
- 2 Tour Mode Choice Logsum
- 1 Regular Workplace Location
- 1 Regular School Location
- 1 Auto Availability

Model Components

- 5 Intermediate Stop Logsum
- 1 Daily Activity Pattern
- 7 Exact Number of Tours
- 1 Work Tour Destination
- 1 Work-Based Subtour Generation
- 7 Tour Primary Destination
- 7 Tour Main Mode

Model Components

- 7 Tour Time of Day
- 7 Intermediate Stop Generation
- 7 Intermediate Stop Location
- 7 Trip Mode
- 7 Trip Departure Time
- 1 TransCAD Assignment/Speed Balancing
- 1 Convergence Testing
- 1 Output Summaries

Software Issues

- Hard to settle on an approach (there are a million ways to do SW.)
- All efforts in US have involved considerable custom software development.
- Options:
 - Modelers do SW.
 - Modelers model, IT people do software.
 - COTS.
- Performance issues.

Software: What We Did

- TransCAD, C# and SQL Server.
- Object/service-oriented.
- Distributable/extensible.
- Usable for other models.
- Integrated with other DRCOG systems.

Status

- Draft software "spine" complete.
 - Building out elements of missing functionality
 - Working on 2nd draft GUI
 - Implementing method to store/reuse scenarios
 - Finishing database

Integrated Regional Model
DENVER REGIONAL COUNCIL DE GOVERNMENTS

- GISDK draft complete.
- Calibration data complete, validation data in process.

Status

- Population Synthesizer under development
- Model estimation
 - Consultant models about 75% complete.
 - DRCOG models about 50% complete.

Things We Understood Least When the Project Started

- Choice models:
 - Use of logsums
 - How location choice models work
 - How the DAP works
- Software:
 - How big the job is!

Auto Availability Model Sample

Results-11	No Car		1 Car		2 Cars		3 Cars		4+ Cars	
Retired adults per driver	Coeff	t-stat	Coeff	t-stat	Coeff	t-stat	Coeff	t-stat	Coeff	t-stat
1 driver in HH	-3.068	-17.1			-1.969	-21.2	-3.665	-19.3	-4.456	-15.6
2 drivers in HH	-5.05	-17.8	-1.469	-13			-1.506	-18.7	-2.626	-20.2
3 drivers in HH	-5.323	-10.8	-1.962	-7.9	-0.5374	-3			-1.019	-5.3
4+ drivers in HH	-5.729	-7.9	-1.79	-4.8	-1.508	-4.6	-0.6527	-2.4		
Part-time workers per driver	-1.981	-2.9	-0.716	-3.3			0.219	1	-0.1614	-0.4
retired adults per driver	1.503	5.2	0.1482	0.7			2.87E-02	0.1	-1.058	-2.6
university students per driver	1.48	2.6	0.4936	1.4			-0.1888	-0.5	-0.831	-1.3
driving age children per driver	2.852	3.4	1.463	2.9			-0.1827	-0.4	-0.9683	-1.5
children under 5 per driver	-0.2021	-0.7	-0.5132	-2.5			-0.5844	-2.6	-1.24	-2.5
Dummy - HH Inc under \$15,000/yr	3.659	15.5	1.419	6.9			-0.2115	-0.6	-1.139	-1.1
Dummy - HH Inc above \$75,000/yr	-1.749	-3.4	-1.403	-8.7			0.2945	2.9	0.4995	3.3
Dummy - HH Inc not reported	1.211	5	0.1289	0.8			0.2674	1.6	0.1511	0.6

Auto Availability Model Sample

	No cars		Less cars than workers		
	Coeff	t-stat	Coeff	t-stat	
Tour Mode Choice Logsum -FT worker	-0.149	-4.2	3.40E-04	0	
Tour Mode Choice Logsum -PT worker	-0.4355	-4.1	-0.1017	-3.1	
Tour Mode Choice Logsum –Students	0.1017	0.4	-0.1511	-1	

In-House vs. Consultant

- How best to understand your model when it's done?
 - Study documentation after the model is done?
 - Closely track consultants as the project progresses?
 - Put yourself on the critical path?
- The more in-house:
 - The less black the box
 - The slower the project
 - The less you can blame the consultants for problems!

Aphorisms so Far

- Software is hard.
- Models are complex because reality is complex.
- But strive for simplicity anyway.
- Aggregation may cause as many problems as it solves.
- Big team means more intra-team communication: this is good and bad.

Contact Information

- Erik Sabina, <u>esabina@drcog.org</u> 303-480-6789
- Tom Rossi, trossi@camsys.com
 617-354-0167

